固定到了一处架子上,放到花瓶光斑出现的位置。
接着继续开启了第一根真空管。
很快。
在x射线的照射下,底片的中心处慢慢出现了绿色的荧光。
法拉第又回到操作台边,将原先的热电偶以及验电器挪到了底片处。
说来也巧。
徐云上辈子在写小说的时候恰好也写到过热电偶,读数也恰好是小数点后五位。
于是呢,当时便有读者质疑过热电偶度数的问题:
19世纪没有电子管,热电偶不可能会显示到小数点后五位。
其实那时候徐云是有些懵逼的——热电偶显示的数值其实和电子管没有任何关系好么.....
电子管是电气仪表.....也就是二次仪表会用到的零件,它只是让屏显数值比较直观一些罢了。
在没有屏显的年代,通过水银示数和热电效应,科学界早在1830年就能做到精确到小数点后六位了。
这种原理其实和卡文迪许扭秤实验有些类似,通过多个精妙的阶段达到以小测大的效果。
屏显只是优化了步骤,让数据可以快速的展现出来,并不是说没有屏显就读不出来示数了。
好了,视线再回归原处。
在与未知射线接触后,热电偶上很快显示出了温升:
0.763。
在光学领域中,这是一个相当大的数值,代表着这束射线的能量很大。
而能量越大,便代表着波长越短,频率越高。
想到这里。
法拉第又走回操作台,取出了一枚三棱镜以及一枚非线性光学晶体——就是徐云当初演示光电效应时用到的那玩意儿。
随后他戴上手套,将三棱镜放到了阳极末端的射出点,抬头看向高斯。
高斯观察了一会儿底片,朝他摇了摇头:
“光斑位置没有变化。”
法拉第重重的咦了一声,迟疑片刻,又换上了非线性光学晶体。
几秒钟后。
高斯依旧摇了摇头,语气中也带上了强烈的费解:
“光斑......还是没有明显变化。”
法拉第站起身匀了匀气息,用大拇指摸着下巴,说道:
“奇怪了,这道光线的折射率为什么会这么低?”
一旁的高斯与韦伯,同样紧紧拧着眉头没有说话。
就像对于这道未