角七米外的地面上,这个地面原本有很多污水淤泥,溅射后的橘子汁会混杂在一起没法观测。
但我们已经提前知道了它的运动轨迹,那么完全可以事先就在那儿放一块干净的采样板。
然后双手离开现场,找个椅子做好,安静等它送上门来就行。
眼下有了Λ超子的信息,还有了公式模型,推导“落点”的环节也就非常简单了。
众所周知。
N及衰变的通解并不复杂。
比如存在衰变链A→B→C→D……,各种核素的衰变常数对应分别为λ?、λ?、λ?、λ?……。
假设初始t?时刻只有A,则显然:)。
随后徐云又写下了另一个方程:
dN?/dt=λ?N?-λ?N?。
这是B原子核数的变化微分方程。
求解可得N?=λ?)-exp(-λ?t)]/(λ?-λ?)。
随后徐云边写边念:
“C原子核的变化微分方程是:dN?/dt=λ?N?-λ?N?,即dN?/dt+λ?N?=λ?N?......”
“代入上面的N?,所以就是N?=λ?λ?)/[(λ?-λ?)(λ?-λ?)+exp(-λ?t)/[(λ?-λ?)(λ?-λ?)]+exp(-λ?t)/[(λ?-λ?)(λ?-λ?)]}.....”
写完这些他顿了顿,简单验算了一遍。
确定没有问题后,继续写道:
“可以定义一个参数h,使得h?=λ?λ?/[(λ?-λ?)(λ?-λ?)],h?=λ?λ?/[(λ?-λ?)(λ?-λ?)],h?=λ?λ?/[(λ?-λ?)(λ?-λ?)]......”
“则N?可简作:N?=)+h?exp(-λ?t)+h?exp(-λ?t)]。”
写完这些。
徐云再次看向屏幕,将Λ超子的参数代入了进去:
“N=)+h?exp(-λ?t)+……h)],h的分子就是Πλi,i=1~n-1,即分子是λ?λ?λ?λ?.....”
“Λ超子的衰变周期是17,所以h?的分母,就是除开Λ超子前一种衰变常数与Λ超子衰变常数λ?的差的积.....”
半个小时后。
极光软件上现实出了一组数值。
a a 0 1000: